
Overview
Correctly rendering multi-layered transparent geometry requires accumulating contributions from multiple
fragments per pixel. Dynamic A-buffers (e.g., Yang et al’s [2010] per-pixel linked lists) achieve this by storing
and sorting fragments on-the-fly. We introduce an improvement to recent GPU-based interactive A-buffer
techniques: we decouple visibility and shading to reduce memory demands of multi-fragment rendering.

Performance and Memory Usage
When primitive count exceeds fragment count, our compact A-buffer has a larger memory footprint. However, our
compact A-buffer scales more efficiently as fragment count increases. This scaling comes at the cost of an additional layer
of indirection while accessing shading data, increasing shader execution time.

Toward Accurate and Efficient Order-Independent Transparency

Lee A. Butler
U.S. Army Research Laboratory

Ethan Kerzner
Department of Computer Science

University of Iowa

Chris Wyman
Department of Computer Science

University of Iowa

References
[Butler and Stephens 07] L. Butler and A. Stephens. Bullet Ray Vision. In IEEE Symposium on Interactive Ray Tracing, 2007.
[Liktor and Dachsbacher 12] G. Liktor and C. Dachsbacher. Decoupled Deferred Shading for Hardware Rasterization. In ACM
Symposium on Interactive 3D Graphics and Games, 2012.
[Vasilakis and Fudos 12] A. Vasilakis and I. Fudos. Sparsity Aware Multi-fragment Rendering. In Eurographics, 2012.
[Yang et al. 10] J. Yang, J. Hensley, H. Grün, and N. Thibieroz. Real-Time Concurrent Linked List Construction on the GPU.
Computer Graphics Forum, 29:1297–1304, 2010.

The Compact A-buffer
Existing interactive A-buffers store shading and visibility inside fragment lists, saving per primitive shading data
repeatedly for multiple pixels. Decoupling storage of primitive and fragment data in our new compact A-buffer
significantly reduces memory overhead. This approach resembles the decoupling proposed by Liktor and
Dachsbacher’s [2012] compact G-buffer.

Non-Optical Rendering
Accurate and efficient OIT has applications to non-optical rendering such as ballistic simulations.
Particularly, optical transparency computes the light absorbed as photons pass through the environment,
whereas ballistic simulation computes the energy absorbed as projectiles pass through an object [Butler
and Stephens 2007].

A tank model representative of those used in ballistic simulations rendered with the Compact A-Buffer. Shown
here with flat shading (left), layer counting (center) and bullet-ray vision (right).

Future Work
Our future work may examine the performance and accuracy tradeoffs between exact and
approximate raster-based transparency for non-optical rendering applications. We may also
compare order-independent transparency algorithms with ray tracing for ballistic simulations.

Memory usage (left) and frame time (right) of regular and compact A-buffers, computed using OpenGL
4.3 on an Nvidia GeForce 690 at 10242.

Left: traditional A-buffers (such as the
S-buffer shown here [Vasilakis and
Fudos 2012]) store multiple copies of
per-primitive shading data across
fragments. Right: the compact A-buffer
reduces the storage of redundant
primitive data.

Christiaan Gribble
Applied Technology Operation

SURVICE Engineering

